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J. Phys. A :  Gen. Phys., Vol. 5. May 1972. Printed in Great Britain 

High temperature series for the susceptibility of the Ising model 
I. Two dimensional lattices 

M F SYKES, D S GAUNT, P D ROBERTS? and J A WYLES 
Wheatstone Physics Laboratorj, University of London. King's College, UK 

MS received 24 August 1971 

Abstract. Extended series expansions for the high temperature zero-field susceptibilitj 0 1  
the Ising model are given in powers of the usual high temperature counting variable 
r = tanh K : for the triangular lattice to c ih .  for the square lattice to P ~ '  and for the honey- 
comb lattice to r 3 2 .  inclusive. The asymptotic behaviour of the ferromagnetic and anti- 
ferromagnetic susceptibility is studied. It is concluded that the ferromagnetic singularit) 
is not exactly factorizible. The antiferromagnetic susceptibility of the square and honeycomb 
lattices has a singularity of the same type as the energy at the antiferromagnetic critical 
temperature. The amplitudes are probably symmetric and close to those given bq the 
energetic approximation. For the triangular lattice the antiferromagnetic susceptibility is 
probably singular at absolute zero although the form of the singularity remains unknon,n. 

1. Introduction 

No exact solution has so far been given for the zero-field susceptibility of the two dimen- 
sional Ising model. Knowledge of the critical behaviour of the susceptibility is largely 
based on a study of exact series expansions (Domb and Sykes 1961, Baker 1961, Sykes 
and Fisher 1962). We have extended high temperature series expansions for the sus- 
ceptibility and this paper presents the new data and a numerical analysis. We assume a 
general familiarity with the problem ; introductions are given by Domb (1960) and Fisher 
(1967). We first indicate briefly the method of derivation of the series coefficients and 
summarize the salient conclusions that have been drawn from earlier analyses. 

We study high temperature expansions in a form first derived by Oguchi (195 1). We 
define the reduced susceptibility R as kTXo/m2 where xo is the zero-field susceptibility 
per spin, k Boltzmann's constant, m the moment of a single spin and T the absolute 
temperature; we denote the energy between parallel spins by J, the quantity JlkT by 
K and tanhK by U .  The variable U, often called the high temperature counting variable, 
plays a fundamental role in the theory of high temperature expansions for the spin 
Ising model. Oguchi showed that if the reduced susceptibility is expanded in the form 

T 

X ( U )  = 1 urcr UO = 1 
r = O  

the coefficients U, can be related to the number of weak embeddings (Sykes et a1 1966) in 
the lattice of a restricted class of linear graphs (magnetic graphs). A detailed study of the 
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High temperature susceptibility of Ising model I 625 

configurational problem (Sykes 1961) leads to the conclusion that the susceptibility 
can be written in the form 

X(U) = ( l - o ~ ) - ~ { l - ( o -  ~ ) u + u ~ - ~ u U ( U ) + G ( ~ ) }  (1.2) 

where o+ 1 is the coordination number, V(u) the reduced configurational energy and 
G(u) a new function, which we call the residual correlation function. This new function 
can be expanded in the form 

m 

G(2:) = d,d 
r = 5  

(1.3) 

and the coefficients d ,  can be related to the number of weak embeddings of a more 
restricted class of linear graphs (no-field and closed magnetic graphs). We shall not 
describe the method in detail ; it presents complex configurational problems and the 
technique is not directly relevant to our present objectives. By means of it we have 
extended the series expansions for the susceptibility of the triangular lattice by four 
coefficients to v r 6 ,  of the square lattice by five to u 2 1 ,  and of the honeycomb lattice by 
six to d2, inclusive. 

In the critical region for a ferromagnet the reduced susceptibility is found to behave 
asymptotically as 

where vf = tanh JlkT,, and the amplitudes A +  and A -  above and below the critical 
(Curie) temperature T, respectively, are constants. The critical index of 1.75 was first 
proposed on the basis of numerical extrapolations (Domb and Sykes 1957, Essam and 
Fisher 1963); subsequent theoretical studies (Fisher 1959a, Kadanoff et al 1967, Wu 
1966, Cheng and Wu 1967) suggest strongly that the result is exact. An extensive biblio- 
graphy is given by Fisher (1963, 1967). There is a pronounced asymmetry in the ampli- 
tudes, A + / A -  being of the order of 37 (Essam and Fisher 1963). 

We investigate higher order terms in the asymptotic expansion (1.4) above T,. 
A precise knowledge of the asymptotic behaviour in the critical region for a two dimen- 
sional lattice has an important application in the provision of guidelines for a study of 
three dimensional lattices. Since the critical temperature is known exactly in two 
dimensions, conclusions on the general pattern of asymptotic behaviour should be firmly 
based; it can then be investigated whether the same general pattern can be recognized 
in three dimensions. We do this in a subsequent paper; we anticipate our conclusions 
and state that we believe they can. 

For a loose-packed lattice a negative interaction energy gives rise to a second 
critical region, that of the antiferromagnet. In two dimensions the reduced suscepti- 
bility is there found to behave asymptotically as 

x - ~ ~ - a + ( l - v / t ’ ~ ) l n ~ l - u / v ~ ~  2: -+ U , &  (1.5) 

where za denotes the now finite value of the susceptibility at U, = -uf (which corres- 
ponds to the antiferromagnetic critical or Nee1 temperature). For equal absolute 
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values of J the critical temperature of the ferromagnet (T,) and the antiferromagnet 
(T,) are the same. 

The functional form of (1.5) was first proposed on the basis of (1.2) (Sykes and Fisher 
1958, Sykes 1961). The residual correlation function is found to make the most impor- 
tant contribution to the susceptibility of a ferromagnet ; for an antiferromagnet on the 
other hand the dominant contribution appears to come from the energy (Sykes and 
Fisher 1962). By setting G(u) equal to zero we obtain an approximation, the energetic 
approximation zE, which can be calculated exactly for two dimensional lattices. In 
particular, the susceptibility and energy have singularities of the same functional form ; 
explicitly 

where for the square lattice 

a E  - E x: 0.1647 + - a- U 0.2097 

and for the honeycomb lattice 

- E x: U 0.1244 + - a- 2: 0.2375. 

Although rigorous theoretical justification is a matter of some difficulty the functional 
form (1.5) is probably exact (Fisher 1959a, 1962). It follows from these theoretical 
studies that, as predicted by the energetic approximation, the antiferromagnetic sus- 
ceptibility is expected to behave asymptotically in the same way as the energy; one 
therefore expects the amplitudes a+ and a- to be equal, since the energy is symmetric in 
this sense. The extrapolations of Sykes and Fisher (1962) were inconclusive, but favoured 
the view that a+ > a - .  We re-examine this problem and make the tentative hypothesis 
that a+ = a - .  

Estimates for the antiferromagnetic amplitude below TN, a - ,  have to be based on 
low temperature expansions. The expansions studied by Sykes and Fisher (1962) have 
been extended by Sykes er al (1965) and further extended by Sykes er a1 (1973). Since 
the evidence is relevant to the question of symmetry we have repeated the investigation 
with the new data ; a full treatment of low temperature expansions is outside the scope 
of the present paper. 

For a close-packed lattice a negative interaction energy does not necessarily give 
rise to a second critical region ; when it does, the critical temperature is not necessarily 
the same as that of the ferromagnet with the same absolute value of J .  There is 
some evidence that the three dimensional face-centred cubic lattice has an antiferro- 
magnetic singularity for which [ U , [  # uf (Danielian 1961, 1964). For the Kagome 
lattice it can be proved that the susceptibility is not singular in the whole antiferro- 
magnetic temperature range - 1 < U < 0 (Sykes and Zucker 1961). For the triangular 
lattice it follows from the magnetic moment transformation of Fisher (195913) that the 
susceptibility is not singular in the range - 1 < U < 0. Sykes and Zucker concluded 
that the susceptibility was probably not singular at U = - 1 ; we shall re-examine this 
question and write, tentatively, U ,  = - 1 without implying that the function is neces- 
sarily singular there. In fact we shall find this question unresolved. 



High temperature susceptibility of Ising model I 627 

2, Ferromagnetic susceptibility of triangular lattice above Tc 

We have derived the expansion of the reduced susceptibility of the plane triangular 
lattice through Y ' ~ ,  We find 

%(U) = 1 +6t;+30uz+ 1 3 8 ~ ~ + 6 0 6 v ~ + 2 5 8 6 v ~ +  10818u6+44574v7 

+ 18 1542~'  + 7326780' + 293521 8u' + 11687202~' ' 
+ 4 6 2 9 6 2 1 0 ~ ' ~  + 182588850~ '~  + 7173952620'~ 

+2809372302~'~ + 10969820358~'~+ . . . . (2.1) 

We begin our analysis by investigating the effect of dividing out the usually assumed 
dominant singularity (1 - u/uf)- 1 '75  which is conveniently done by using the critical 
polynomial and writing 

X(U) = ( 1 - 4 ~ + v ~ ) - " ~ ~ Q ( ~ )  (2.2) 
Q(u) = 1 - U + 0.250' - 0 . 2 5 ~ ~  - 0 . 5 9 3 7 5 ~ ~  + 0 . 5 9 3 7 5 ~ ~  + 3.9296875~~ 

- 3.929687511'- 1 1 * 1 1 5 7 2 ~ ~  - 4 . 8 8 4 2 8 ~ ~  - 1 * 4 0 5 4 0 ~ ' ~  

- 34.5946~' 

- 3478 .863~ '~  - 10869.172~'~ - . . . . 
- 140.21 IU l Z  - 410.2892; ' - 1 1 6 7 . 0 1 2 ~ ' ~  

(2.3) 

This procedure is that suggested by Park (1956) and used subsequently by Sykes and 
Zucker (1961) and Sykes and Fisher (1962); the critical polynomial is introduced because 
it is expected, by analogy with the known form both of the zero-field partition function 
and the spontaneous magnetization, that the critical point uf = 2 - J3 will be associated 
with the conjugate root U = 2 + J3 ; in general this second root will have an asymptoti- 
cally negligible effect on the quotient Q(o). 

The form of the quotient shows very clearly that the usually assumed dominant 
behaviour really does dominate; in fact it is only after about a dozen terms that any 
definite trend in the coefficients becomes established. Ultimately they all seem of one 
sign but are difficult to extrapolate with precision. It seems most likely that Q(u) is 
singular at uf .  From the behaviour of the higher terms in the quotient we conclude that a 
second order asymptotic behaviour is becoming established and that the assumption 
that the dominant singularity can be removed by division is a questionable one. 

To study the second order asymptotic behaviour we start afresh and make the more 
general assumption that 

x(u) - (1 - u / u f ) - ~ @ ( u ) + Y ( u )  (2.4) 

where "tuf) # 0. We investigate the simplest possibility, that @and Y are regular in the 
disc IuI < v f ,  by expanding @(U) in a Taylor series about v = u f .  Writing u/vf = t ,  we 
obtain 

X ( U )  - (1 - t ) - Y @ ( u f )  - (1 - t ) - Y +  'Of@'(Uf) ++(l - t ) -  ? +  2u:w(Of) 

- . . . +Y(v). (2.5) 
According to a theorem by Darboux (Darboux 1878, Ninham 1963), the additive func- 
tion Y(v) has an asymptotically negligible effect on the coefficients of %(U). Thus we 
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assume 7 = 1.75 and attempt to represent the singular part of the susceptibility by 
successive approximations 

(2.6) 

where A , ,  B,, C,, . . . are determined from the last Y available coefficients of ~ ( c ) .  The 
departure of the remaining coefficients is allowed for by a correction polynomial. Y,(t). 
Thus, we write 

X(U) 2 i c A t ) + ' r r ( t )  (2 .7)  

where in the limit of r -+ x, Y,(t) -+ Y(t), and the coefficients of Y, are chosen to obtain 
complete agreement with the available coefficients of ~ ( r ) .  If ~ ( c )  is known through um. 
then the correction polynomial will be of degree ( m  - r ) .  

The order to which the approximation may be carried with advantage depends on 
the number of coefficients available and the quality of their convergence. The behaviour 
of the quotient already examined indicates that some smoothness has been established, 
at least to second order. A numerical study for fixed r( = 1 , 2 , 3 .  . .) is made by applying 
the procedure to the expansion with successive increments in the number of coefficients 
up to the maximum available. We quote the values found for the second and third 
approximations from m = 12 to m = 16 in table 1. The second approximation yields a 

Table 1. Successive approximations for triangular lattice 

12 0.847132 0,1742 0,847066 0.1 763 0.0442 
13 0.847122 0,1743 0.847070 0.1 762 0,041 7 
14 0447116 0.1745 0.847082 0.1 758 0.0322 
15 0.847112 0.1746 0,847086 0,1756 0,0280 
16 0,847109 0,1747 0,847086 0.1756 0.0287 

smooth sequence of estimates for A and B. The third approximation also yields smooth 
sequences for A and B, but the sequence for C is less smooth. It is to be noted however 
that the values of A and B are not very much modified as we change the order of the 
approximation ; we conclude that the data are consistent with our assumptions. We 
have found that, with the available coefficients, higher order approximations lead to no 
further improvement. We therefore adopt the third approximation at m = 16 as our 
final representation to obtain 

X ( C )  z 0*847086( 1 - t)-  1 ' 7 5  + 0.1756( 1 - t ) - 0 ' 7 5  + 0.0287( 1 - t)' 2 5  

+ Y3(t) (2.8) 

where we calculate the correction polynomial in accordance with (2.7) as (correct to 4 
decimal places) 

Y3(t)  = -0.0514+0.0008t+0~0031t2 +0.0029t3 +0.0002t4 

- o.ooogt5 - 0.0002t6 + 0.0001t7. (2.9) 
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The correction polynomial is nonsingular ; asymptotically it effectively has a constant 
value Y3(1) = -0.0272. This very small value accords with the observation that the 
dominant singularity very nearly factors. The equations (2.8) and (2.9) should provide a 
good numerical representation over the range 0 6 U < of .  Finally, from table 1 we 
estimate the ferromagnetic amplitude 

A + = 0.84709 & 0.00002 (2.10) 

in good agreement with the earlier estimate from 12 coefficients (Sykes and Fisher 1962) 

The representation (2.8) is also valid in the range - vf 6 U 6 0. The triangular 
antiferromagnet does not order at U = - o f ;  it remains to determine the behaviour in 
the range - 1 6 U < - of .  This we investigate in $4. 

of 0,8473. 

3. Ferromagnetic and antiferromagnetic susceptibility of square lattice above T, 

We have derived the expansion of the reduced susceptibility of the plane square lattice 
through t i 2 ' .  We find 

X(U) = 1+40+ 12o2+36u3+ lOOu4+276v5+74Ou6+ 1972c7+5172v8 

+ 1 3 4 9 2 ~ ~  + 34876~" + 89764~" + 2 2 9 6 2 8 ~ ' ~  + 5 8 5 5 0 8 ~ ' ~  

+ 1 4 8 6 3 0 8 ~ ' ~ + 3 7 6 3 4 6 0 ~ ' ~  $94973800'~ +23918708~ '~  

+ 6 0 0 8 0 1 5 6 ~ ' ~  + 150660388~'~ + 3 7 7 0 0 9 3 0 0 ~ ~ ~  

+ 942105604~~'  + . . . . (3.1) 

As in the previous section, we begin by dividing out the critical polynomial and write 

X(U) = ( ~ - ~ u - u ~ ) - " ~ ~ Q ( u )  (3.2) 
Q(u) = 1 + O &  - 1 . 1 2 5 ~ ~  +0.5625u3 - 1 . 6 6 4 1 ~ ~  + 1 . 7 1 4 8 ~ ~  - 3 . 3 8 7 7 ~ ~  

+ 7.5591~' - 11.75231~~ + 1 8 . 8 2 6 8 ~ ~  - 34.3695~" + 66.8638~" 

- 140.9139~" + 297.008~' 

- 2844.056~ '~  + 5972.240'~ - 12946.480'~ + 2 7 6 8 5 . 2 ~ ' ~  

- 6 3 6 . 8 1 7 ~ ' ~  + 1330.752~' 

- 61 1 1 4 . 2 ~ ~ '  + 132027.8~~ '  - . . . , (3.3) 

The quotient for the square lattice is in marked contrast to that for the triangular 
lattice. The signs alternate right from the start and the behaviour of the coefficients is 
clearly dominated by the presence of the antiferromagnetic singularity at U, = - ; 
this dominance is sufficient to mask any second order ferromagnetic effects of the kind 
seen in the previous section. The behaviour is quantitatively in accord with the presence 
of a singularity of the type 

- a*( 1 + zj/uf) In1 1 + v/ufl .  (3.4) 

If successive coefficients in (3.3) are multiplied by n(n - l)ca( - l)"", where n is the power 
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of ti, we obtain estimates for a*. The antiferromagnetic amplitude a, of (1.5) is simply 
related through (3.2) by a, = (4ti,)-"75a* and we calculate the sequence 

n a+ n U +  

14 0.20963 18 0.21094 
15 0,20938 19 0.20882 
16 0.21 183 20 0.2 121 6 
17 0.20882 21 0.2098 3. 

(3.5) 

All these estimates are remarkably close to the amplitude corresponding to the ener- 
getic approximation of 

= 0.20972,. . . 2042 + 4 
aE, = 

497-c 

This is not in good agreement with Sykes and Fisher (1962) who concluded that a, 
was some 50% higher than (3.6). This rather large discrepancy appears to be due to the 
fact that the original extrapolation, based on five fewer coefficients, was made using 
lnQ(v). We have found by numerical study of numerous algebraic functions with 
singularities of the type (1.4) and (1.5) combined in various ways that in general the 
convergence of In Q is extremely slow (Roberts 1971). 

As before, since the assumption that the dominant singularity occurs as a factor 
is a questionable one, we start afresh and seek to represent the susceptibility by a 
function that behaves like (1 - u/uf)- 1 ' 7 s  near U = tif and like (1 + ti/tif) In1 1 + ti/ufl near 
t' = ti, = - t i f .  The question at once arises of whether we should adopt a sum of two 
functions, one with the ferromagnetic and the other with the antiferromagnetic singu- 
larity, or a product, or more generally, a combination of both. This dilemma can be 
avoided because of a second theorem (Darboux 1878, Szego 1959) which we illustrate 
by an example. Suppose f, and f2 are two functions with singularities on the same 
radius of convergence, say explicitly 

f1 = ( l+x) - "  

f2 = (l-x)-P 
(3.7) 

Then the product 

may be represented asymptotically by 2-=(l-x)-O near x = 1 and by 2-P(1+x)-" 
near x = - 1. The theorem states that the expansion coefficients of the product F 
behave asymptotically like those of the sum 2-y2 + 2-Bf1. Thus effectively the product 
can be represented asymptotically by a sum. Since the ferromagnetic and antiferro- 
magnetic singularities have the same radius of convergence we can exploit this result 
and omit the product term. The appropriate generalization of (2.4), with y = 1.75, is 
now 

 ti) - (1 -u/vf)- '"5@f(u)-(1 +tiltif) In11 + ti/~~l@,(ti)+'Y(ti) (3.9) 

where we now suppose Of,  0, and Y are regular in the disc Iu( < t if .  Following the 
method of 9 2 we expand the second term as a Taylor series about U = ti, = - cf and 
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attempt to represent the antiferromagnetic component by a sequence of approxima- 
tions 

- al( 1 + t )  In11 + tl 
- a,( 1 + t )  In1 1 + tl - b,( 1 + t ) ,  In1 1 + tl 
- a3( 1 + t )  In1 1 + tl - b3( 1 + t ) ,  In[ 1 + tl - c3( 1 + t )3  In1 1 + tl 
. . .  (3.10) 

(where no confusion will arise between the amplitudes a, and the coefficients defined in 

We have found by numerical experiment that for the 21 coefficients available only 
three parameters can be fitted with advantage. We therefore adopt the asymptotic 
approximation 

(3.1 1) 

which corresponds to a second order approximation to the ferromagnetic singularity 
and a first order approximation to the antiferromagnetic singularity. As before the 
constants A , ,  B ,  and a, are determined from the last three coefficients. We quote the 
values found from m = 17 to m = 21 in table 2.We consider the data in table 2 consistent 

(1.1)). 

X , , ~ ( O )  = ~ ~ ( 1 -  t ) - " 7 5  +B,(I - t ) - 0 ' 7 5  -ul(l + t )  In1 1 +tl 

Table 2. Successive approximations for square lattice 

m A2 B* a1 

17 0.771740 0.3473 0.1971 
18 0,771734 0.3474 0.1974 
19 0.771745 0.3471 0.1983 
20 0.771732 0.3475 0.1994 
21 0.771742 0.3472 0.2003 

with our assumptions. The ferromagnetic amplitude is well defined ; the estimates for 
the antiferromagnetic amplitude are increasing slowly and are close to the value found 
for the energetic approximation (3.6). We adopt the last entry for our final representation 
to obtain 

X ( O )  5 0.771742(1 -t)-"75+0.3472(1-t)-0'75 

-0~2003(1+t)lnJl+tl +Y2,1(t)  (3.12) 

where the correction polynomial Y2,1 is chosen to obtain complete agreement with the 
coefficients available. We calculate (correct to 4 decimal places) 

Y2,1(t) = - 0.1 189 + 032462t + 0.0742t2 - 0*0051t3 + 0*0081t4 

- 0.0006t5 - 0*0003t6 + 0-0005t7 + 04)004te 

- 0.0002t9 + o.ooo4tl0 - 0.0002t11+ 0.0002t12. (3.13) 

We estimate the ferromagnetic amplitude from table 2 as 

A +  = 0,77174 f 0.00002 (3.14) 
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and near the ferromagnetic critical temperature 

x - 0.77174( 1 - t ) -  1 . 7  + 0.3472( 1 - r ) - 0 ' 7 5  - 0.073 2 + t 1 (3.15) 

which accords with the observation that the dominant singularity very nearly factors. 
Near the antiferromagnetic critical temperature the behaviour indicated by (3.12) is 

(3.16) - 0.159374 - 0.2OO3( 1 + t )  In/ 1 + tj t +  -1 .  

We estimate that 

%a = 0.1594f0.0010. (3.17) 

The antiferromagnetic amplitude is difficult to estimate with precision, owing to the 
presence of the ferromagnetic singularity. From table 2 we conclude that 

a, = 0.22k0.01. (3.18) 

The estimate of A +  is in good agreement with the earlier estimate of Sykes and 
Fisher (1962), from 16 terms, that A ,  = 0.77184f0.00025, the discrepancy being inside 
the quoted error limits. For za their estimate of 0.15695 is some 1.5 % lower, and their 
estimate a, = 0.317 some 44% higher. As we have already stated these rather large 
discrepancies appear to result partly from the slow convergence of In Q, and partly from 
the assumption that the dominant singularity may be divided out ;  the result (3.15) 
suggests the latter does not hold precisely. 

4. Antiferromagnetic susceptibility of triangular lattice 

A detailed study of the antiferromagnetic susceptibility was made by Sykes and Zucker 
( 1961). Their investigation effectively assumes that the ferromagnetic singularity occurs 
as a factor ; as we have seen this is apparently very nearly the case. We follow them in 
first transforming the expansion (2.1) into a form convergent over the whole temperature 
range (T  > 0) of the antiferromagnet. Fisher (1959bj has shown that if xT denotes the 
susceptibility of the triangular lattice and zH that of the honeycomb lattice, then 

We obtain 

zr(w) = 1+6w2+24w4+90w6+318w8+ 1 0 9 8 ~ ' ~ + 3 6 9 6 ~ ' ~  

+ 1 2 2 7 0 ~ ' ~ + 4 0 2 2 4 w ' ~  + 1 3 0 6 5 0 ~ ' ~  +421176w20 

+ 1 3 4 8 9 9 8 ~ ~ ~  + 4 2 9 9 0 1 8 ~ ~ ~ +  1 3 6 3 5 6 3 0 ~ ~ ~  

+43O92888wz8 + 1 3 5 6 9 8 9 7 0 ~ ~ ~ + 4 2 6 1 4 4 6 5 4 w ~ ~ .  . . . (4.3) 

As U varies from 0 to - 1, w2 varies from 0 to -f. The ferromagnetic critical point 
corresponds to w2 = ++. We divide by the dominant singularity by writing 

%T(\v) = (1-3w2)-l 7 5 Q ( ~ 4  (3 .3)  
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Q(w) = 1 +0.75w2 - 1 ~ 5 9 3 7 ~ ~ + 0 * 9 1 4 0 6 ~ ~ - 2 * 5 0 6 3 ~ ~  f5 .6744~" 

- 9.9498~" + 13 .7967~ '~  - 17 .3852~ '~  + 9.35 1 7 ~ '  

+ 32.4408~~'- 2 1 4 . 1 8 ~ ~ ~  + 7 8 2 . 1 6 6 ~ ~ ~ -  2 6 4 8 . 0 7 ~ ~ ~  

+ 8 0 9 5 . 0 3 ~ ~ ~  - 24769.21~~' + 7 2 4 9 9 ~ ~ ~  -. . . . (4.5) 

Once again the quotient shows clearly the overriding dominance of the ferromagnetic 
singularity; there is a break in the sign pattern after the coefficient of w18 but it seems 
likely that a steady alternation persists thereafter and the radius of convergence is 
probably w2 = 3. 

At absolute zero the behaviour of the energetic approximation can be calculated 
from the known value of the energy (Houtappel 1950) and we find 

(4.6) 

or in the variable w 

(4.7) 

In other words : in the uariable w2, but not in U ,  the singularity is of the same form as for a 
loose-packed antiferromagnet. In the variable U the singularity is weaker. We therefore 
begin by fitting (4.3) to a form analogous to (3.1 1) by writing 

x2,1(w) = A2(1 - 3 w 2 ) - " 7 5 + B 2 ( 1 - 3 w 2 ) - 0 ~ 7 5  

- al(  1 + 3 w2) In1 1 + 3w21. 

We give the successive solutions in table 3. The first two columns appear to be conver- 
ging to constant values 

A2 5 1.089 

B2 1 0.072 

Table 3. Successive approximations for triangular lattice in special variable wz 

6 1.0899 
7 1.0878 
8 1.0900 
9 1.0886 
10 1.0898 
11  1.0890 
12 1.0897 
13 1.0892 
14 1.0896 
15 1.0893 
16 1.0895 

0.0699 
0.0882 
0.0662 
0.082 1 
0.0677 
0.0781 
0.0686 
0.0757 
0,0689 
0.0742 
0.0690 

+ 0.0795 
+0.0614 
+ 0.0348 
+ 0.01 24 
-0.0106 
- 0.029 1 
- 0.0477 
- 0,0629 
-0,0786 
-0,0918 
-0.1056 

(4.9) 
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These values, which correspond to the ferromagnetic singularity, are in reasonable 
agreement with the more precise estimates already made in 8 2 : thus it follows from (4.2) 
that 

2 4 3 - 3  
(1-t) = -(1-3~’)+- (1 - 3 W 2 ) 2  dl3 

2 8 

(1-3w2)3+ . . .  2 J 3 - 3  +- 8 
(4.10) 

and on substitution in (2.8) we obtain 

X ( W )  - 1*08955(1- 3 ~ ~ ) - ” ~ ~ + 0 - 0 6 7 8 7 7 ( 1 -  3 ~ ’ ) - ~ . ~ ’  

- 0.078448( 1 - 3 ~ ~ ) ~ ’ ~ ’ .  (4.1 1) 

The third column does not appear to be converging. The data seem inconsistent with the 
assumption (4.8) which we have based on the energetic approximation. Since (4.11) 
should be a fairly accurate representation of the ferromagnetic singularity we subtract it 
from the total susceptibility (4.3) to obtain the following series (with coefficients correct 
to five figures) : 

- 0.07898 + 0 . 0 6 8 3 0 ~ ~  - 0 . 0 6 2 6 6 ~ ~  + 0 . 2 9 8 3 2 ~ ~  - 0.56164~’ 

+ 1 .1095~”-  1 . 0 4 9 5 ~ ” + 2 . 4 9 6 8 ~ ’ ~ +  1 . 1 7 6 0 ~ ’ ~ + 2 * 3 3 0 9 ~ ’ ’  

+ 36.51 1 ~ ’ ~  - 3 6 . 1 9 4 ~ ~ ~  + 3 7 8 . 9 5 ~ ’ ~  - 4 8 2 . 5 8 ~ ’ ~  + 3 3 7 5 . 5 ~ ~ ’  

-4639.8~” + 2 8 7 0 8 ~ ~ ’ .  , . . 14.12) 

This appears to be a very slowly convergent series. The signs alternate but with a 
change in phase after eight terms ; it is difficult to represent the behaviour ofthe coefficients 
by any simple function and it would seem that further data are required. We conclude 
however that the energetic approximation is not a good one for the triangular lattice 
near v = - 1. The antiferromagnetic ground state of the triangular lattice is highly 
degenerate (Wannier 1950); since the energy is singular at absolute zero it seems likely 
the susceptibility will be also; the series (4.12) is quite consistent with such a conjecture. 
The earlier conclusions of Sykes and Zucker (1961) are not confirmed by the new data. 

is difficult because an estimate of the remainder in (4.12) is 
required; however this remainder is probably not large. The value indicated by trun- 
cating (4.12) and adding (4.11) is 0.141 ; on the assumption that any singularity in (4.12) 
is no stronger than that of (4.7) we estimate 

The estimation of 

0.141 < < 0.150 (4.13) 

but the upper limit is very uncertain because of the possibility of a stronger singularity. 
The earlier estimate of Sykes and Zucker (1961) is slightly lower, at = 0.139, but this 
was based on the assumption that the dominant ferromagnetic singularity occurs as a 
factor. 
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5. Ferromagnetic and antiferromagnetic susceptibility of honeycomb lattice above T, 

We have derived the expansion of the reduced susceptibility of the honeycomb lattice 
through u3'. We find 

~ ( u )  = 1+3v+6uZ+ l 2 ~ ~ + 2 4 ~ ~ + 4 8 ~ ' + 9 0 ~ ~ + 1 6 8 ~ ~ + 3 1 8 ~ ~  

+600u9 + 1098~'' + 2004~" + 369611" + 6 7 9 2 ~ ' ~  

+ 12270u'4+22140u's +40224uI6 +72888u" 

+ 1 3 0 6 5 0 ~ ' ~  +234012uI9 +421176~~~+756624u~ '  

+ 1348998~'' +24O3840uz3 +4299O18uz4+ 7677840~~'  

+ 13635630~'~ + 2 4 2 0 6 2 2 0 ~ ~ ~  +43092888uZ8 

+ 76635984~" + 135698970~~' + 240199320~~~  

+426144654u3' +. . . . (5.1) 

We have found this series difficult to represent satisfactorily. The behaviour of the 
coefficients is consistent with the presence of the expected ferromagnetic and antiferro- 
magnetic singularities, but is complicated by the presence of a pair of singularities in the 
complex plane at U = & i/J3. The precise nature of these singularities is hard to deter- 
mine but without some approximateallowance for their effect it is not possible to estimate 
A +  and a+ by the methods we have used so far. After much numerical experiment with 
representations of the general type 

we have found no set of the parameters R, S ,  5, q, which gives a wholly satisfactory result. 
A similar difficulty was found by Sykes and Fisher (1962) who divided out the ferro- 
magnetic singularity and included in the representation of the quotient a term effectively 
equivalent to taking = -k, S = 0, in (5.3). However the sequences obtained for A 2  
and a, are not very sensitive to the values o f t  and q adopted in the range 151 < $, lql < $ 
and indicate 

A +  N 0.6478 U +  N 0.23. (5.3) 

We do not consider the quality of the data justifies our quoting any evidence explicitly ; 
we simply report that in general the range of estimates for a, obtained in this way is 
some 40 %-50 % lower than the estimate of Sykes and Fisher of a, N 0.332. An average 
of various extrapolations indicates 

xa = 0.1230 f 0.001 0 (5.4) 

while Sykes and Fisher found 0.121, some 1.6% lower. The discrepancies are of the 
same order, and in the same sense, as we have already found for the square lattice; they 
are probably accounted for in the same way. Since the even terms of the series (5.1) have 
already been examined in 9 4, with only partial success, we shall not present any further 
analyses ; our understanding of this series is incomplete. 
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At present the best available estimate for the ferromagnetic amplitude of the honey- 
comb lattice is that obtained by the theory of transformations (Fisher 1959b); using the 
result 

A+(triangular) 1 
A +(honeycomb) 2 

- - -(3)7!8 ( 5 . 5 )  

we calculate from (2.10) 

A &(honeycomb) = 0.64786 f 0.00002 (5.6) 

in good agreement with (5.3) 
The best available estimate of a, is probably obtained by assuming symmetry and 

adopting the estimate of a- we make in the next section. 
The expansion (5.1) can be used to  evaluate the antiferromagnetic susceptibility of the 

Kagome lattice. The method is described by Sykes and Zucker (1961); the new data are 
consistent with their conclusion that for the honeycomb lattice 

(5 .7)  X (  - 4) = 0.397 193 f 0*000002 

from which it follows, after correcting their arithmetic, that for the Kagome lattice: 

X( - 1) = 0.20098 & 0.0001. ( 5 . 8 )  

6. Antiferromagnetic susceptibility of square and honeycomb lattices below TN 

Since the investigation of Sykes and Fisher (1962) the low temperature series expansions 
for the antiferromagnetic susceptibility of the square lattice have been extended by 
four coefficients, and for the honeycomb lattice by three coefficients (Sykes et al 1965. 
1973). In terms of the standard variable y = exp(2J/kT) the series are for the square 
lattice 

~ ( y )  = 4y4 + 16ys + 324."+ 1 5 6 ~ ' ~  + 6 0 8 ~ ' ~  + 2 6 8 8 ~ ' ~  + 12064y" 

+ 5 5 9 5 6 ~ ~ '  + 2 6 6 6 5 6 ~ ~ ~  + . . . (6.1) 

and for the honeycomb lattice 

~ ( y )  = 4y3+ l~4.5+8y6"8y~+964'8+320y9+8884. '0+2748~' '  

+ 83844." + 2 6 3 4 0 ~ ~ ~  + 8 3 5 6 8 ~ ' ~  + 2688643.' ' 
+ 8 7 3 6 4 8 ~ ' ~  +. . . (6.1) 

We follow the original investigation and try to represent the remainders in (6.1) 
and (6.2) by 

(6.3) 

respectively. The constants E and F are determined from the last known coefficients 
and the constants 8 and 8' are chosen to give the best representation of the available 
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terms. The method assumes a singularity of the energetic type; allowing for the change 
of variable E + )a- and F + a - /  J3 as the number of known coefficients increases. 

For the square lattice the value 6’ = 0 gives about the optimum sequence of esti- 
mates for a-, the last six being 0.23876, 0.22352, 0.22606, 0.22382, 0.22264, 0.22248. 
Although slightly irregular these seem to be converging to a limit which we estimate as 

a- = 0.222+0.002 (6.5) 

which is close to the estimate a, = 0.22+0.01 of 8 3. We conclude that the amplitudes 
are symmetric and some 5 % higher than those of the energetic approximation 
(aE = 0.2097.. .). Using the last value for E and summing the series (6.3) at 

y = ya = exp(2J/kTN) 
we estimate 

xa = 0*1589+0*0005 

which is inside the limits of error of the corresponding high temperature estimate 
(3.17) 

For the honeycomb lattice 8‘ = 3 gives about the optimum sequence of estimates for 
a - ,  the last six being 0.24209, 0.24019, 0.24070, 0.24020, 0.24020, 0.24013. We estimate 
the limit as 

U -  = 0.240+0.001 (6.7) 
which is close to the rather imprecise estimate of a, = 0.23 we made in § 5. We conclude 
that the amplitudes are probably symmetric and very close to the energetic approxima- 
tion (aE = 0.2375 . . .). Using the last value of F and summing (6.4) at y = y ,  we estimate 

xa = 0.1224&0*0003 (6.8) 
which is inside the limits of error of the corresponding high temperature estimate (5.4). 

For these low temperature expansions the dominant singularity is the antiferro- 
magnetic singularity. The coefficients can be fitted to a sequence of approximations of 
the type (3.10); we have found the successive estimates converge only slowly but are 
consistent with the conclusions of this section ; in particular the estimates for the critical 
susceptibility xa are within the quoted error limits. 

7. General conclusions 

We have not reviewed the whole problem; rather we have described only those parts 
where new data have resulted in new conclusions. 

The simplest situation is presented by the high temperature expansion for the sus- 
ceptibility of the triangular lattice in the counting variable U. Asymptotically 

where @ and Y are regular in the disc IuI d uf .  The ratio Y(uf)/@(vf) is only about 
- 0.03 ; the dominant singularity cannot therefore be removed completely by division. 
This latter conclusion holds, mutatis mutandis, for the square and honeycomb lattices ; as a 
result we are not in detailed agreement with Sykes and Fisher (1962) whose methods 
effectively assume factorization of the ferromagnetic singularity. Expanding @ as a 
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Taylor series yields successive approximations which can be used for numerical repre- 
sentations. We have estimated the ferromagnetic amplitude A ,  for the triangular lattice 
on the basis of (7.1). 

The corresponding expansion for the square lattice is complicated by the presence 
of the antiferromagnetic singularity at U ,  = - u f .  Asymptotically 

where Of, @, and Y are regular in the disc I G /  d u f .  Expanding af and @, as Taylor 
series yields successive approximations which can be used for numerical representations. 
We have estimated the ferromagnetic amplitude A + and the antiferromagnetic amplitude 
a, on the basis of(7.2); we have estimated the amplitude a- from extended low tempera- 
ture expansions. As a result we have made quantitive rather than qualitative modifica- 
tions to the conclusions of Sykes and Fisher (1962) ; the antiferromagnetic singularity 
is still found to be of the energetic type 

but consistent with a, = a - .  In other words the singularity has the same symmetry as 
the energy ; we have also found this amplitude to be close to that of the energetic approxi- 
ma tion. 

The corresponding expansion for the honeycomb lattice is further complicated 
by the presence of singularities on the same radius of convergence but in the complex 
plane ; additional terms are required to construct the analogue of the representation 
(7.2). We have not been able to find a completely satisfactory one. 

To investigate the antiferromagnetic susceptibility of the triangular lattice we have 
studied the expansion in the variable w2 = u ( l  + v)/(l  + r 3 ) .  Again we have found that 
the ferromagnetic singularity, although very nearly a factor, cannot be removed com- 
pletely by division. From extended data we have concluded, in disagreement with 
Sykes and Zucker (1961), that the susceptibility of the antiferromagnet could well be 
singular at absolute zero and that there is some justification in writing U, = - 1 ; however 
the behaviour there does not seem in accord with a singularity of the energetic type. 
The problem remains unresolved. 

For convenience of reference we summarize the dominant amplitudes converted to 
the temperature scale. Near T, the ferromagnetic susceptibility behaves as 

AT(1- T,/T)- 1 ’ 7 5  T- ,  T,+ (7.4) 

with 

A ,  = 0.92421 0.00003 (triangular) 

A,  = 0.96259 k 0*00003 

A ,  = 1.04642 k 0.00003 

(square) 

(honeycomb). 

Near TN the antiferromagnetic susceptibility behaves approximately as 

X - Xa-aT( l  - TN/T) lnll - TN/T/ T - ,  TN (7.5) 
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with 

aT = 0.196 f 0.002 

aT = 0*182+0*001 (honeycomb). 

(square) 
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